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In this paper the new concept of totally omnipresent operators is introduced. These

operators act on the space of holomorphic functions of a domain in the complex

plane. The concept is more restrictive than that of strongly omnipresent operators,

also introduced by the authors in an earlier work, and both of them are related to the

existence of functions whose images under such operators exhibit an extremely wild

behaviour near the boundary. Sufficient conditions for an operator to be totally

omnipresent as well as several outstanding examples are provided. After extending a

statement of the first author about the existence of large linear manifolds of

hypercyclic vectors for a sequence of suitable continuous linear mappings, it is shown

that there is a dense linear manifold of holomorphic monsters in the sense of Luh, so

completing earlier nice results due to Luh and Grosse-Erdmann. # 2002 Elsevier Science

(USA)
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1. INTRODUCTION

In 1985 Luh [22] introduced the concept of holomorphic monsters.
Roughly speaking, a holomorphic monster in the sense of Luh is a
holomorphic function on a simply connected domain G of the complex
plane such that it and all its derivatives and antiderivatives possess an
extremely wild behaviour near the boundary, see below. Luh proved the
existence of a dense subset of monsters in the space HðGÞ of holomorphic
functions on G; endowed with the compact-open topology. Note that HðGÞ
is a Fr!eechet space, hence a Baire space. Two years later, Grosse-Erdmann,
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by using techniques of functional analysis via certain composition–
differentiation–antidifferentiation operators, showed that, in fact, there
exists a residual set of monsters in HðGÞ [18, Kapitel 3]. In this work we will
establish, among other results, the existence of a dense linear manifold of
holomorphic monsters. Consequently, the set of Luh monsters is large not
only topologically but also algebraically. The reader is referred to [23, 24, 27]
for further interesting results on this topic.

As a matter of fact, we will state our main result (Theorem 5.1) in a much
more general form, by means of the introduction of the notion of totally
omnipresent operators, see Section 2. This notion is strictly stronger than
that of strongly omnipresent operators, which we recall shortly together
with the related concept of T-monsters, both of them introduced by the
authors in [6]. In the present paper we strengthen (Theorem 3.1) a recent
statement of the first author [4] (see Theorem 1.1) about the existence of
large linear manifolds of hypercyclic vectors for a sequence of continuous
linear mappings. Theorem 5.1 is extracted as a consequence. Furthermore, a
number of practicable sufficient conditions for an operator to be totally
omnipresent are furnished in Section 4, as well as a large family of examples
including differential, antidifferential, integral, composition and multi-
plication operators.

Now, we pass to fix some notations and definitions. Throughout
this paper G will stand for a domain in the complex plane C and @G

will denote its boundary taken in the extended complex plane C1 ¼
C [ f1g: N is the set of positive integers, N0 ¼ N [ f0g; Z is the set of
integers, R is the real line, and Bða; rÞ ¼ fz : jz 	 aj5rg is the euclidean
open ball with centre a and radius r (a 2 C; r > 0). The corresponding
closed ball is %BBða; rÞ: An operator always refers to a continuous (not
necessarily linear) self-mapping. We denote by Oð@GÞ the set of all open
subsets of C1 meeting @G: If A � C then %AA (A0) represents the closure (the
interior, respectively) of A; jjf jjA :¼ supz2Aj f ðzÞj; where f is a complex
function defined in A; and LTðAÞ is the set of all affine linear
transformations t; tðzÞ ¼ az þ b; such that tðDÞ � A; where D :¼ Bð0; 1Þ:
As for the definition of T-monsters and of its associated notion of strongly
omnipresent operators, we fix here one which is slightly stronger than that of
[6], because there (as in [22]) the domain G was never C in order that the
finite boundary be non-empty. Nevertheless, as pointed out in [9], using
chordal distances, all proofs can be adapted to the case where the boundary
point under consideration is the point of infinity. Thus, as in [9], we establish
the following definition.

Definition 1.1. (a) A function f 2 HðGÞ is a holomorphic

monster whenever the following universality property is satisfied: For each
g 2 HðDÞ and each t 2 @G there exists a sequence ðtnÞ of affine linear
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transformations with

tnðzÞ ! t ðn ! 1Þ uniformly on D and tnðDÞ � G ðn 2 NÞ

such that
f ðtnðzÞÞ ! gðzÞ ðn ! 1Þ

locally uniformly in D:

(b) Let T : HðGÞ ! HðGÞ be an operator. Then a function f 2 HðGÞ is
a T-monster if Tf is a holomorphic monster. The set of T-monsters is
denoted by MðTÞ:

(c) An operator T : HðGÞ ! HðGÞ is strongly omnipresent if for all
g 2 HðDÞ; e > 0; r 2 ð0; 1Þ and V 2 Oð@GÞ the set

UðT ; g; e; r;VÞ :¼ ff 2 HðGÞ : there exists some t 2 LTðV \ GÞ

such that jjðTf Þ 8 t	 gjjr %DD5eg

is dense in HðGÞ:

As in [6, Theorem 2.2], it is easy to prove that T is strongly omnipresent if
and only if the set MðTÞ is residual, i.e., its complement in HðGÞ is of first
category (see also [1] for the weaker concept of omnipresent operators and
[9, Example 3.4] for a linear example of an omnipresent operator which is
not strongly omnipresent, such weaker operators are related to cluster sets,
see [13] and [26]). Observe that an easy continuity argument allows us to
restrict ourselves to non-constant affine linear transformations in parts (a)
and (c) of the last definition. Note also that due to the results of [18, Kapitel
3] a function f 2 HðGÞ}where G is simply connected}is a holomorphic
monster in the sense of Luh [22] (for future references, we call such an
f a Luh-monster) if and only if f is simultaneously a Dj-monster and a
D	j

a -monster for all j 2 N0: Here D is the differentiation operator Df ¼ f 0;
D0 ¼ I is the identity operator, Djþ1 ¼ D 8 Dj; a is a fixed point in the
simply connected domain G; D0

a ¼ I and, for each j 2 N; D	j
a denotes the

unique antiderivative F of f of order j such that F ðkÞðaÞ ¼ 0 ðk 2 f0; 1; . . . ;
j 	 1gÞ: Since the intersection of countably many residual sets is again
residual, the existence of Luh-monsters is thus a direct consequence of the
strong omnipresence of operators Dj and D	j

a ; j 2 N0: In fact, more general
differential and antidifferential operators are strongly omnipresent, see [6,
Sects. 3–4; 8] and Section 4. In [9] sufficient conditions are given for an
operator to be strongly omnipresent, as well as characterizations of the
strong omnipresence of composition and multiplication operators.

Finally, we will need in Section 3 some terminology taken from the
modern theory of universality. The reader is referred to [19] for an excellent
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survey about the history, results and references on this topic. If X and Y are
(Hausdorff) topological vector spaces over the same field K ð¼ R or CÞ and
Tn : X ! Y ðn 2 NÞ is a sequence of continuous linear mappings, then ðTnÞ
is said to be hypercyclic (or universal) whenever there is a vector x 2 X ;
called also hypercyclic for ðTnÞ; such that the orbit fTnx : n 2 Ng is dense in
Y : Note that this forces Y to be separable. The sequence ðTnÞ is called
densely hypercyclic whenever the set HCððTnÞÞ of hypercyclic vectors for
ðTnÞ is dense. On the other hand, ðTnÞ is said to be hereditarily hypercyclic

whenever ðTnk
Þ is hypercyclic for each sequence n15n25n35 � � � of positive

integers. The sequence ðTnÞ is densely hereditarily hypercyclic if and only if
ðTnk

Þ is densely hypercyclic for every sequence n15n25n35 � � � as above.
For the sake of convenience, we will keep all these definitions even in the
case that the mappings Tn are not linear. Finally, if M � X is a linear
manifold then we say that it is hypercyclic for ðTnÞ whenever M =f0g �
HCððTnÞÞ: In [4, Theorem 2] the following result is obtained.

Theorem 1.1. Let X and Y be two metrizable topological vector spaces

such that X is separable. Assume that Tn : X ! Y ðn 2 NÞ is a densely

hereditarily hypercyclic sequence of continuous linear mappings. Then there is

a dense linear submanifold of X all of whose non-zero vectors are hypercyclic

for ðTnÞ:

Applications of the latter theorem can be found in [4, Theorems 3–4; 20].
In fact, Theorem 1.1 is an extension of the known result of Herrero–
Bourdon–B"ees asserting the existence of T-invariant dense hypercyclic linear
manifolds for a hypercyclic linear operator T (i.e., the sequence of iterates
ðTnÞ is hypercyclic) on a (real or complex) locally convex space, see
[10, 11, 21] (see also [5] to add the property ‘‘with maximal cardinality’’ to
such manifolds when T acts on a Banach space).

2. TOTALLY OMNIPRESENT OPERATORS

In this section we first define in a practical way a new kind of operator.
We then show how that definition can be translated in terms of
approximation of vectors in certain function spaces.

Let us denote by Nð@GÞ the family of all sequences of similarities of the
plane which take the unit disk near the boundary of G; that is,

Nð@GÞ ¼ fs ¼ ðtnÞ � LTðGÞ : tn is non-constant ðn 2 NÞ and

sup
z2D

wðtnðzÞ; @GÞ ! 0 ðn ! 1Þg;
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where w denotes the chordal distance on C1: Observe that since @G

is compact in C1 the fact ðtnÞ 2 Nð@GÞ implies the existence of at least
one boundary point t and of a sequence fn15n25n35 � � �g � N

with tnk
! t ðk ! 1Þ uniformly on D: If T is an operator on HðGÞ;

g 2 HðDÞ; e > 0; r 2 ð0; 1Þ and s ¼ ðtnÞ 2 Nð@GÞ then we set

U
$
ðT ; g; e; r; sÞ ¼ ff 2 HðGÞ : there is n 2 N withjjðTf Þ 8 tn 	 gjjr %DD5eg:

ð1Þ

Definition 2.1. Let T : HðGÞ ! HðGÞ be an operator. We say that T

is totally omnipresent whenever each set U
$
ðT ; g; e; r; sÞ is dense in HðGÞ

(g 2 HðDÞ; e > 0; r 2 ð0; 1Þ; s 2 Nð@GÞ).

Note that each U
$
ðT ; g; e; r; sÞ is an open set of HðGÞ: For future

references, we denote by Dðh;K ; dÞ (h 2 HðGÞ; d > 0; K a compact subset of
G) the basic neighbourhood

Dðh;K ; dÞ ¼ ff 2 HðGÞ : jf 	 hjjK5dg: ð2Þ

Remark 2.1. If ðgiÞ is a dense sequence in HðDÞ (for instance, ðgiÞ may
be an enumeration of polynomials with coefficients having rational real and
imaginary parts) then T is totally omnipresent if and only if for each s 2
Nð@GÞ and each ði; jÞ 2 N2 the set U

$
ðT ; gi;

1
j
; j

jþ1
; sÞ is dense in HðGÞ:

As promised, we reformulate the last definition in other language. Before
this, a few more notations: If t 2 @G then NðtÞ will stand for the set of all
sequences ðtnÞ of non-constant affine linear mappings with tnðDÞ � G ðn 2
NÞ and tnðzÞ ! t ðn ! 1Þ uniformly on D: Trivially, NðtÞ � Nð@GÞ: On
the other hand, Ct denotes composition with the function t (i.e.,
CtðhÞ ¼ h 8 t) whenever it makes sense. In the next proposition, the
equivalence (b),(c) is trivial, but we want to establish (c) explicitely
because the implication (a))(c) will be crucial in the proof of Theorem 5.1.

Proposition 2.2. Let T be an operator on HðGÞ: Then the following

conditions are equivalent:

(a) The operator T is totally omnipresent.

(b) For every t 2 @G and every ðtnÞ 2 NðtÞ there exists a dense set of

functions f 2 HðGÞ satisfying that for every g 2 HðDÞ there exists a strictly

increasing sequence ðnkÞ � N such that ðTf Þðtnk
ðzÞÞ ! gðzÞ ðk ! 1Þ uni-

formly on compact subsets of D: In other words, the sequence Ctn 8 T : HðGÞ
! HðDÞ ðn 2 NÞ is densely hypercyclic.

(c) For every t 2 @G and every ðtnÞ 2 NðtÞ; the sequence Ctn 8 T : H

ðGÞ ! HðDÞ ðn 2 NÞ is densely hereditarily hypercyclic.
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Proof. Let ðgiÞ be a countable dense set in HðDÞ: Given t 2 @G and
s ¼ ðtnÞ 2 NðtÞ; the set

MðsÞ :¼
\

i;j2N
U

$
T ; gi;

1

j
;

j

j þ 1
; s

� �

is the set of hypercyclic vectors for fCtn 8 Tgn51: So (a),(b) follows from
the fact that HðGÞ is a Baire space. ]

We now consider the relationship between total and strong omnipresence.
If we consider a set UðT ; g; e; r;VÞ as in Definition 1.1(c) then we can
associate to V a point t 2 V \ ð@GÞ as well as a sequence of open balls
Bn � G \ V (n 2 N) such that supw2Bn

wðw; tÞ ! 0 ðn ! 1Þ: Then

sup
z2D

wðtnðzÞ; @GÞ4 sup
z2D

wðtnðzÞ; tÞ ¼ sup
w2Bn

wðw; tÞ ! 0 ðn ! 1Þ;

where tnðzÞ is a non-constant affine linear mapping with tnðDÞ ¼ Bn:
Therefore s :¼ ðtnÞ 2 Nð@GÞ: If T is totally omnipresent then U

$
ðT ; g; e; r;

sÞ is dense in HðGÞ: If f 2 U
$
ðT ; g; e; r; sÞ then there exists N 2 N such that

jjðTf Þ 8 tN 	 gjjr %DD5e; so f 2 U ðT ; g; e; r;VÞ because tN 2 LTðVÞ since tN

ðDÞ ¼ BN � G \ V : Summarizing, U
$
ðT ; g; e; r; sÞ � UðT ; g; e; r;VÞ: Thus,

the last set is dense. Hence we have proved that every totally omnipresent
operator is strongly omnipresent.

In Section 4, we will see several examples of (linear) strongly omnipresent
operators (in fact, composition operators) which are not totally omnipre-
sent. Further examples will be provided at the end of Section 5 and after
Theorem 6.1.

3. COMMON HYPERCYCLIC LINEAR MANIFOLDS

In this section we are going to improve Theorem 1.1 in order to use that
improvement in Section 5. Observe that the next result asserts the existence
of common large hypercyclic manifolds for a countable family of sequences
of linear mappings. It should be pointed out that the unique additional
hypothesis with respect to Theorem 1.1 is that X is Baire, which takes place,
for instance, if X is complete.

Theorem 3.1. Let X and Y be two metrizable topological vector spaces

such that X is Baire and separable. Assume that, for each k 2 N; T
ðkÞ
n : X !

Y ðn 2 NÞ is a densely hereditarily hypercyclic sequence of continuous linear
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mappings. Then there is a dense linear submanifold M � X such that

M =f0g �
\
k2N

HCððT ðkÞ
n ÞÞ:

Proof. Observe first that hypercyclicity forces Y to be separable, so
second-countable. Let us choose a dense sequence ðznÞ in X and denote by d

a distance on X compatible with its topology. We will consider later the
open balls

GN ¼ x 2 X : dðx; zNÞ5
1

N

� �
ðN 2 NÞ:

Since X is a Baire space and Y is second-countable each of the sets
HCððT ðkÞ

n ÞÞ ðk 2 NÞ is residual in X [19, Theorem 1], because they are dense.
Therefore their intersection

T
k2N HCððT ðkÞ

n ÞÞ is also residual, so dense,
whence we can pick a vector

x1 2 G1 \
\
k2N

HCððT ðkÞ
n ÞÞ:

Then for every k 2 N we can find a (strictly increasing) subsequence fpð1;
k; jÞ : j 2 Ng of positive integers such that

T
ðkÞ
pð1;k;jÞx1 ! 0 ð j ! 1Þ:

But, since each ðT ðkÞ
n Þ ðk 2 NÞ is densely hereditarily hypercyclic, every set

HCððT ðkÞ
pð1;k;jÞÞÞ is again residual. Thus, as above, a vector x2 can be selected

in G2 \
T

k2N HCððT ðkÞ
pð1;k;jÞÞÞ: Now choose for every k a subsequence

fpð2; k; jÞ : j 2 Ng of ðpð1; k; jÞÞ with

T
ðkÞ
pð2;k;jÞx2 ! 0 ð j ! 1Þ:

Note that also T
ðkÞ
pð2;k;jÞx1 ! 0 (j ! 1) for each k 2 N: Since the new

sequences ðT ðkÞ
pð2;k;jÞÞ (k 2 N) are again densely hypercyclic, one can choose a

vector x3 2 G3 \
T

k2N HCððT ðkÞ
pð2;k;jÞÞÞ:

It is evident that this process can be continued by induction, getting a
sequence fxN : N 2 Ng � X and a family ffpðn; k; jÞ : j 2 Ng : n; k 2 Ng of
sequences of positive integers satisfying

xN 2 GN for all N 2 N; ð3Þ
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xN 2
\
k2N

HCððT ðkÞ
pðN	1;k;jÞÞÞ for all N 2 N ð4Þ

and

T
ðkÞ
pðn;k;jÞxN ! 0 ð j ! 1Þ for all n5N and all k 2 N; ð5Þ

where, in order to make the notation consistent, ðpð0; k; jÞÞ stands for the
whole sequence of positive integers for every k 2 N: Define

M ¼ spanðfxN : N 2 NgÞ:

Since fzn : n 2 Ng is dense in X and dðxn; znÞ51
n
! 0 ðn ! 1Þ (by (3)), the

set fxn : n 2 Ng is also dense, hence M is a dense linear submanifold of X :
It remains to prove that each non-zero vector of M is hypercyclic for each

sequence ðT ðkÞ
n Þ ðk 2 NÞ: Fix x 2 M =f0g: Then there are finitely many

scalars a1; . . . ; aN with aNa0 such that x ¼
PN

n¼1 anxn: Since a non-zero
multiple of a hypercyclic vector is still hypercyclic, we may assume that
aN ¼ 1: Fix a positive integer k and a vector y 2 Y : Let us show a

subsequence fT
ðkÞ
rð jÞ : j 2 Ng of ðT ðkÞ

n Þ such that

T
ðkÞ
rð jÞx ! y ð j ! 1Þ:

By (4), there is a subsequence ðrð jÞÞ of ðpðN 	 1; k; jÞÞ such that

T
ðkÞ
rð jÞxN ! y ð j ! 1Þ:

But, since ðrð jÞÞ is a subsequence of ðpðN 	 1; k; jÞÞ we see from (5) that
T

ðkÞ
rð jÞxn ! 0 ð j ! 1Þ for all n 2 f1; . . . ;N 	 1g; so

PN	1
n¼1 anT

ðkÞ
rð jÞxn ! 0

ð j ! 1Þ: Finally, by (6) and linearity,

T
ðkÞ
rð jÞx ¼ T

ðkÞ
rð jÞxN þ

XN	1

n¼1

anT
ðkÞ
rð jÞxn ! y þ 0 ¼ y ð j ! 1Þ;

as required. ]

4. SUFFICIENT CRITERIA FOR TOTAL OMNIPRESENCE AND
EXAMPLES

The organization of this section is as follows. First, we establish the total
omnipresence of differential, antidifferential and integral operators under
rather general conditions, see Theorem 4.1. This supplies a large class of
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examples, including the operators DN and D	N
a (N 2 N0). In particular, the

identity operator I becomes totally omnipresent. Second, we will construct
new totally omnipresent operators from known ones. As an application we
will see that every onto linear operator on HðGÞ is totally omnipresent. Next
we study the following problem: Under which conditions does the existence
of a single T-wild-behaved function associated to each boundary point and
each sequence of affine transformations coming near that point suffice to
make T totally omnipresent? Afterwards, we provide with some workable
conditions under which a general operator is totally omnipresent. Finally,
we apply some of these results to furnish new examples of this kind of
operators. In fact, we will be able to characterize the total omnipresence for
left-composition operators and multiplication operators. For right-compo-
sition operators, necessary conditions and sufficient conditions are given. It
happens that in many cases the criteria as well as the examples to be given
for total omnipresence are close to those of strong omnipresence. Hence we
will simplify (or even drop, as in Theorem 4.1) the proof of each result about
total omnipresence whenever it is very similar to that of the corresponding
strong omnipresence result, see [6, 8, 9].

Let us start with the definition of the operators to be handled. Let FðzÞ ¼P1
j¼0 ajz

j be an entire function of subexponential type, that is, for every
e > 0 there is a constant M ¼ MðeÞ > 0 such that jFðzÞj4Meejzj for all
z 2 C: Then the associated linear differential operator FðDÞ ¼

P1
j¼0 ajD

j is
well defined on HðGÞ: This still holds if F is just of exponential type (i.e.,
there are constants M; K > 0 such that jFðzÞj4MeK jzj for all z 2 C)
whenever G ¼ C: If G is a simply connected domain, a 2 G and j : G � G !
C is a function that is holomorphic in both variables, then the Volterra
integral operator of the first kind Vjf ðzÞ ¼

R z

a
f ðtÞjðz; tÞ dt ðz 2 GÞ makes

sense on HðGÞ: In particular, by choosing jðz; tÞ :¼
P1

j¼1 aj
ðz	tÞj	1

ð j	1Þ! ; we

obtain that if CðzÞ ¼
P1

j¼1 ajz
j is a formal complex power series such that

lim sup
j!1

jaj j1=j

j
4

1

Dða;GÞ;

where Dða;GÞ ¼ supz2G inffr > 0 : a is in the connected component of Bðz;
rÞ \ G containing zg; then the associated linear antidifferential operator C
ðD	1

a Þ ¼
P1

j¼1 ajD
	j
a is well defined on HðGÞ; see [3]. On the other hand, we

recall that if j 2 HðG;GÞ :¼ ff 2 HðGÞ : f ðGÞ � Gg; c is an entire function
and h 2 HðGÞ then the, respectively, associated right-composition operator
Cj; left-composition operator Lc and multiplication operator Mh are
defined on HðGÞ as

Cjð f Þ ¼ f 8 j; Lcð f Þ ¼ c 8 f ; Mhð f Þ ¼ h � f :
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As for differential and integral operators, we have that under weak
hypotheses all of them and some combinations of them are strongly
omnipresent (see [6, Sects. 3–4; 8, Sects. 2–3]). But observe that in many
proofs a set UðT ; g; e; r;VÞ as in Definition 1.1 as well as a neighbourhood
as in (2) are fixed. Then a suitable t 2 LTðV \ GÞ is found in order to get
the density of that set. A simple glance reveals that we can in fact fix a point
t 2 @G and a sequence s ¼ ðtnÞ 2 NðtÞ in such a way that a positive integer n

is available (with tnðDÞ close to t enough) to make U
$
ðT ; g; e; r; sÞ dense.

Consequently, we can establish the following theorem.

Theorem 4.1. Assume that FðzÞ;CðzÞ are power series as above and that

j : G � G ! C is a holomorphic function in both variables. Let a be a fixed

point in G: Suppose also that P is a polynomial and that, if N 2 N0; cjðzÞ
ð j ¼ 0; . . . ;NÞ are holomorphic functions on G: We have:

(a) If F is non-zero then the operator FðDÞ is totally omnipresent.

(b) If G is simply connected and C is non-zero then CðD	1
a Þ is totally

omnipresent.

(c) If G is simply connected and either F or P is non-zero then the

operator FðDÞ þ PðD	1
a Þ is totally omnipresent.

(d) If G is simply connected and cNðzÞa0 for all z 2 G except for a finite

subset of G then the operator T on HðGÞ defined by

Tf ðzÞ ¼
XN

j¼0

cjðzÞf ð jÞðzÞ þ VjðzÞ ð f 2 HðGÞ; z 2 GÞ

is totally omnipresent. In particular, if P is non-zero then the operators

PðDÞ þ Vj and PðDÞ þCðD	1
a Þ are totally omnipresent.

Specifically, part (a) ((b), (c), (d), respectively) follows after modifying
suitably the proof of [6, Theorem 3.1] ([6, Theorem 4.2, Corollary 4.3; 8,
Theorems 3.6, 3.4], respectively).

As proposed in [8], the strong omnipresence (so the total omnipresence) of
FðDÞ þCðD	1

a Þ is unknown to us up to date. As for part (d) of the last
theorem, observe that even for j non-zero the operator Vj may not be
totally omnipresent (see Section 6), and that T may not be totally
omnipresent if cN is just supposed to be non-zero (for an example, see the
last paragraph of Section 4, where we take N ¼ 0; j ¼ 0). Nevertheless, they
are strongly omnipresent, see [8]. The point is that if we try to adapt the
proof of [8] to the total omnipresence of these Vj and T then one sees that
one cannot start with a prefixed sequence ðtnÞ with ðtnðDÞÞ close to the
boundary. We will go back to these operators in Section 6.
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Next we state a remark containing the promised assertion on onto linear
operators. We denote TS :¼ T 8 S: On the other hand, the product T � S is
defined as ðT � SÞf ¼ Tf � Sf :

Remark 4.2. Let T and S be operators on HðGÞ; with T totally
omnipresent.

(i) Suppose that each pre-image S	1ðOÞ is dense in HðGÞ whenever O
is. Then TS and S are totally omnipresent. In particular, by the Open
Mapping Theorem, this occurs when S is both linear and onto.

(ii) Assume that for every t 2 @G and every f 2 HðGÞ there exists

lim
z!t

ðSf ÞðzÞ 2 C ðrespectively; C=f0gÞ:

Then T þ S (respectively, T � S) is totally omnipresent.

Proof. Part (ii) is easy and left as an exercise to the reader. As for (i), let
t 2 @G and s ¼ ðtnÞ 2 NðtÞ: By hypothesis,

HCððCtn
TSÞÞ ¼ S	1ðHCððCtn

TÞÞÞ

is dense in HðGÞ: So TS is totally omnipresent, by Proposition 2.2(b). To see
now that S is totally omnipresent, apply the case when T ¼ I : ]

For example, if G is simply connected and a is a fixed point in G; then the
differentiation operator D (and so DN) is (linear and) onto on HðGÞ:
Therefore we derive that the operator RN;a on HðGÞ given by

RN;af ðzÞ ¼ f ðzÞ 	
XN	1

j¼0

f ð jÞðaÞ
j!

ðz 	 aÞj;

that is, the value at z of Taylor’s remainder of order N of f at a; is totally
omnipresent: just take T ¼ D	N

a and S ¼ DN in part (i) of Remark 4.2. Note
that neither D	N

a nor RN;a is onto; they do not even have dense range.
Consider again the operator RN;a acting on HðGÞ; where G is any

bounded domain (G may be non-simply connected this time). Then we can

write RN;a ¼ T þ S with T ¼ I and Sf ðzÞ ¼ 	
PN	1

j¼0
f ð jÞðaÞ

j! ðz 	 aÞj ; whence

part (ii) of Remark 4.2 applies, yielding RN;a again as a total omnipresent

operator in this new situation.
We now state a sufficient condition under which the existence for each

boundary point of a single wild function with respect to a linear operator
yields total omnipresence, compare [9, Theorem 2.7]. At this point it is
convenient to introduce the following definition. We say that an operator
T on HðGÞ is @-hypercyclic if and only if for each t 2 @G and each
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s ¼ ðtnÞ 2 NðtÞ the sequence ðCtn
TÞ is hypercyclic. It is evident from

Proposition 2.2 that total omnipresence implies @-hypercyclicity.

Proposition 4.3. Let T be a linear @-hypercyclic operator on HðGÞ such

that for each t 2 @G there is a dense subset Dt � HðGÞ satisfying that there

exists

lim
z!t

ðThÞðzÞ 2 C

for every h 2 Dt: Then T is totally omnipresent.
Proof. For each boundary point t and each sequence ðtnÞ 2 NðtÞ we fix a

hypercyclic function ft for ðCtn
TÞ: Then the set ft þDt is dense and it is

contained in HCððCtn
TÞÞ: Indeed, Dt is dense and for fixed h 2 Dt and

g 2 HðDÞ there exists an increasing sequence ðnkÞ � N for which Tftðtnk
ðzÞÞ

! gðzÞ 	 aðtÞ ðk ! 1Þ in HðDÞ; where aðtÞ is the limit guaranteed by the
hypothesis; therefore ðTð ft þ hÞÞ 8 tnk

tends to g: Then Proposition 2.2
applies and we are done. ]

For instance, the condition in the above theorem is satisfied by a
differential operator FðDÞ and by a finite order antidifferential operator
PðD	1

a Þ (P is a polynomial and a 2 G) whenever G is a bounded simply
connected domain. Indeed, choose Dt ¼ fpolynomialsg for all t 2 @G:

If linearity is not imposed on T ; different additional hypotheses about the
behaviour of T near the boundary are needed. We will say that an operator
T on HðGÞ is locally stable near the boundary whenever the following
property is satisfied: For each compact subset K of G there exists a compact
subset M of G such that for each closed ball B � G=M; each f 2 HðGÞ and
each e > 0 there exist a compact set S � G=K with C=S connected and d > 0
such that if g 2 HðGÞ and jjf 	 gjjS5d then jjTf 	 TgjjB5e:

It should be pointed out that our definition of local stability is less
restrictive than that given in [9, Definition 2.1]. There the set S was a closed
ball, but a close look at the proofs reveals that the connectivity of C=S is all
that is needed.

For instance, from Cauchy’s integral formula for derivatives, it is easy to
verify that each differential operator FðDÞ is locally stable near the
boundary; in fact we can always take concentric balls B; S with radiusðBÞ
5radiusðSÞ:

Due to the same considerations given just before our Theorem 4.1, we
establish without proof the following result, cf. [9, Theorem 2.6].

Theorem 4.4. Let T be a @-hypercyclic operator on HðGÞ that is locally

stable near the boundary. Then T is totally omnipresent.
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It happens that, at least for the non-linear case (if T is linear the answer is
unknown to us), MðTÞ may be non-empty while T is not strongly
omnipresent, see [9, Example 2.8]. Unfortunately, we do not know whether
the corresponding result holds in the new setting of this paper. Accordingly,
we raise the following question:

Is every @-hypercyclic operator totally omnipresent?

Our next goal is to get practicable conditions on an operator that
guarantee its total omnipresence. Combining the first hypothesis of
Theorem 4.4 with the following notion will give positive results. Following
[9], we say that T has locally dense range near the boundary if there exists a
compact subset M of G such that for each open ball U � G=M; the
restriction operator TU : f 2 HðGÞ/ðTf ÞjU 2 HðUÞ has dense range. Every
operator with dense range has, trivially, locally dense range. For instance,
every non-zero differential operator FðDÞ has dense range whenever G is
simply connected since FðDÞ is onto on the space of entire functions HðCÞ
[14, 25] and HðCÞ is dense in HðGÞ: The same reasoning shows that FðDÞ
has locally dense range in any domain G: Also the antidifferential operator
D	N

a has locally dense range near the boundary. As the linear example
Tf ðzÞ ¼ f ðz=2Þ (with G ¼ D) shows (see [9, Example 2.10]), the density of
the range does not imply strong (so total) omnipresence. On the other hand,
D	N

a tells us that an operator with non-dense range may be totally
omnipresent. The trick is in the fact that it possesses both ‘‘local’’ properties,
namely, density and stability.

Theorem 4.5. Let T be an operator on HðGÞ having locally dense range

and local stability near the boundary. Then T is totally omnipresent.

Proof. Let us fix sets U
$
ðT ; g; e; r; sÞ and Dðh;K ; dÞ as in Definition 2.1

and (2), respectively. Our goal is to show that their intersection is not empty.
Put s ¼ ðtnÞ and retain in mind that s 2 Nð@GÞ: We have that tnðDÞ ¼
Bðzn; rnÞ for certain zn 2 C; rn > 0 ðn 2 NÞ: Denote by Bn the closure of
these balls ðn 2 NÞ: By hypothesis, there exists a compact subset M � G

such that for each open ball U � G=M; the mapping f 2 HðGÞ/ðTf ÞjU 2
HðUÞ has dense range. Without loss of generality, it can be supposed that
the compact set M is the same as that given for K in the definition of local
stability. Since the balls Bn approach the boundary, one can select a positive
integer N with BN � G=M: Thus, if one chooses U ¼ BðzN ; rNÞ then there
exists a function f 2 HðGÞ such that

jjTf 	 g 8 t
	1
N jjtN ðr %DDÞ5

e
2
; ð7Þ
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because g 8 t
	1
N 2 HðUÞ: Now the local stability comes in our help, yielding a

compact set S � G=K with C=S connected and a d1 > 0 such that for all
j 2 HðGÞ

jjj	 f jjS5d1 implies that jjTj	 Tf jjBN
5

e
2
: ð8Þ

By Runge’s theorem, it is possible to find a function f1 2 HðGÞ (in fact, a
rational one with poles outside G; as the method of the pole-pushing shows,
see for instance [15]) satisfying

jjf1 	 hjjK5d ð9Þ

and

jjf1 	 f jjS5d1:

To achieve this, we have taken K with the property that each connected
component of C1=K contains at least one connected component of C1=G
(so K [ S enjoys the same property), which carries no loss of generality. By
(8),

jjTf1 	 Tf jjBN
5

e
2
: ð10Þ

Now, (7), (10) and the fact that tNðr %DDÞ � BN yield

jjTf1 	 g 8 t
	1
N jjtN ðr %DDÞ4jjTf1 	 Tf jjBN

þ jjTf 	 g 8 t
	1
N jjtN ðr %DDÞ5e: ð11Þ

Consequently, from (9) and (11),

f1 2 U
$
ðT ; g; e; r; sÞ \ Dðh;K ; dÞ;

and we are done. ]

Remark 4.6. A closer look at the last proof (a suitable subsequence of
ðtnÞ tending to some boundary point will be needed) reveals that in order
that T be totally omnipresent it suffices that the following property holds:
For each compact subset K � G and each t 2 @G there is an open set V with
V 3 t such that, for every closed ball B � V \ G;

(i) The restriction mapping TB0 has dense range and

(ii) For each f 2 HðGÞ and e > 0 there exist a compact set S � G=K
with connected complement and d > 0 such that for all g 2 HðGÞ the fact
jjf 	 gjjS5d implies jjTf 	 TgjjB5e:
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Note that if T is linear then (ii) reduces to say

ðii0Þ For each e > 0 there exist a compact set S � G=K with connected
complement and d > 0 such that if g 2 HðGÞ and jjgjjS5d then jjTgjjB5e:

Only a piece of caution: the weaker notions of ‘‘somewhere local
stability’’ and ‘‘somewhere local density’’ introduced in [9] do not work here,
because they do not permit to fix a sequence ðtnÞ tending to a given
boundary point.

As a consequence of Theorem 4.5 we obtain that, in particular, if T is an
onto locally stable operator (not necessarily linear) then it is totally
omnipresent, compare with Remark 4.2. In addition, we derive again,
independently, that the identity operator is totally omnipresent.

We are now passing to study the total omnipresence of the right-
composition operator Cj generated by a holomorphic self-mapping j 2
HðG;GÞ: Its strong omnipresence has been recently characterized in [9,
Theorem 3.1]. Specifically, it is proved there that Cj is strongly omnipresent
if and only if MðCjÞ is non-empty if and only if for every V 2 Oð@GÞ the set
jðV \ GÞ is not relatively compact in G: In particular, if G ¼ C; then Cj is
strongly omnipresent if and only if j is non-constant. Unfortunately, we
have not been able this time to isolate the exact conditions for Cj to be
totally omnipresent, see Theorems 4.8 and 4.9. At this point it is convenient
to introduce a new concept and to recall a topological notion.

Definition 4.1. We say that a function F : G ! C is locally one-to-one

near the boundary if and only if there is a compact set K � G such that F is
one-to-one on every open ball U � G=K :

By using the compactness of @G in C1; it is easy to see that F is locally
one-to-one near the boundary if and only if we can associate to each t 2 @G

an open set V � C1 containing t satisfying that F is one-to-one on every
open ball U � V \ G: A mapping F : X ! Y between two topological
spaces X ; Y is called proper if the preimage F	1ðKÞ of each compact subset
K � Y is compact in X : In our setting, the following lemma will reveal itself
to be useful.

Lemma 4.7. A continuous self-mapping F : G ! G is proper if and only if

for each t 2 @G and every compact set K � G there exists an open set V �
C1 with V 3 t such that FðV \ GÞ \ K ¼ |:

Proof. Assume that F is proper and that, by the way of contradiction,
there exist a boundary point t and a compact subset K � G with the
property that FðVn \ GÞ \ Ka| for all n 2 N; where Vn is the chordal ball
in C1 with centre t and radius 1=n: Then we can select a point zn 2 Vn \ G
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such that FðznÞ 2 K: Hence F	1ðKÞ is not compact, because ðznÞ �
F	1ðKÞ � G but zn ! t 2 @G as n ! 1: This is a contradiction.

Conversely, assume F is not proper, that is, that there exists a compact
subset K � G such that F	1ðKÞ is not compact. But, by continuity, F	1ðKÞ
is closed in G; so F	1ðKÞ cannot be relatively compact in G: Hence there
exist a boundary point t and a sequence ðznÞ � F	1ðKÞ with zn ! t as n !
1: Given any open set V � C1 containing t; we can choose n0 2 N

satisfying zn 2 V \ G for all n > n0: Therefore FðznÞ 2 FðV \ GÞ \ K for all
n > n0; which tells us that FðV \ GÞ \ Ka|: This concludes the proof. ]

In our next theorem we will show how the latter two properties}which
are rather practicable}suffice for total omnipresence. In Theorem 4.9 we
get at least that the fact that j be proper is necessary, but the local bijectivity
should be changed to a kind of (not very pleasant) ‘‘ð1

3
Þ-local bijectivity near

the boundary,’’ see Theorem 4.9.

Theorem 4.8. If j is proper and locally one-to-one near the boundary

then the operator Cj is totally omnipresent.

Proof. We will try to apply Theorem 4.5, or rather Remark 4.6 after it,
with T ¼ Cj: Hence, our goal is to show that (i) and ðii0Þ are fulfilled. Fix
t 2 @G and a compact set K � G: By hypothesis and by Lemma 4.7, there
exists an open set V1 � C1 with V1 3 t such that

jðV1 \ GÞ \ K ¼ |:

Since j is locally one-to-one near the boundary there is another open set V2

with t 2 V2 � V1 satisfying that j is one-to-one on every open ball U �
V2 \ G:

We show now that V ¼ V2 satisfies (i) and ðii0Þ: Fix a closed ball B �
V2 \ G: Then there is an open ball U with B � U � V2 \ G: If S :¼ jðBÞ;
then S � jðV2 \ GÞ � jðV1 \ GÞ � G=K ; and C=S is connected because j
: U ! jðUÞ is an isomorphism. It is clear that given e > 0 and g 2 HðGÞ
with jjgjjS5d :¼ e then

jjCjgjjB ¼ jjg 8 jjjB ¼ jjgjjS5e:

On the other hand, the restriction mapping ðCjÞB0 : f 2 HðGÞ/ð f 8 jÞjB0
2

HðB0Þ has dense range, because j : B0 ! jðB0Þ is an isomorphism and
HðGÞ is dense in HðjðB0ÞÞ by Runge’s theorem (note that jðB0Þ is a simply
connected domain contained in G). Thus, (i) and ðii0Þ are satisfied, and the
proof is concluded. ]

Recall that every totally omnipresent operator is @-hypercyclic by
Proposition 2.2.
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Theorem 4.9. Assume that j 2 HðG;GÞ and that Cj is @-hypercyclic.
Then j is proper and satisfies the following property:

For every real number s > 3 there exists a compact set K � G such that, for

every open ball Bða;RÞ � G=K ; j is one-to-one on Bða;R=sÞ:

Proof. Suppose, by the way of contradiction, that j is not proper.
Therefore, by Lemma 4.7, there is a boundary point t and a compact set
K � G such that for each n 2 N we can select a point zn 2 Vn \ G with
jðznÞ 2 K ; where Vn is the chordal ball with centre t and radius 1=n: For
every n we can choose rn > 0 such that Bðzn; rnÞ � Vn \ G: Define s ¼ ðtnÞ
as tnðzÞ ¼ rnz þ zn: Then tnðDÞ ¼ Bðzn; rnÞ � V \ G and

sup
z2D

wðt; tnðzÞÞ4
1

n
! 0 ðn ! 1Þ;

therefore s 2 NðtÞ: Consider a function f 2 HðGÞ and the constant function
gðzÞ :¼ 1 þ M; where M ¼ maxz2K j f ðjðzÞÞj: Then g 2 HðDÞ and, for all
n 2 N and all r > 0;

jjCtn
Cjf 	 gjjr %DD5 j f ðjðznÞÞ 	 1 	 Mj

5M þ 1 	 j f ðjðznÞÞj51:

Hence ðCtn
CjÞ cannot be hypercyclic, which is a contradiction.

Assume now, again by the way of contradiction, that j does not satisfy
the ð1

3
Þ-property given in the statement. Then there are a real number s > 3

and a sequence of balls Bðan; rnÞ � G tending to the boundary in such a way
that j is not one-to-one on Bðan;

rn

s
Þ: By taking a subsequence if necessary,

we can suppose that

sup
z2Bðan;rnÞ

wðt; zÞ ! 0 ðn ! 1Þ ð12Þ

for some boundary point t: For each positive integer n there exist
points zn;wn 2 Bðan;

rn

s
Þ satisfying znawn and jðznÞ ¼ jðwnÞ: Consider the

following sequence s ¼ ðtnÞ of affine linear transformations:

tnðzÞ ¼
s

3
ðwn 	 znÞz þ zn ðn 2 NÞ:

Then tnð0Þ ¼ zn; tnð3sÞ ¼ wn and tnðDÞ ¼ Bðzn;
s
3
jwn 	 znjÞ � Bðzn;

s
3
� 2rn

s
Þ �

Bðan; rnÞ: Consequently, by (12),

sup
z2D

wðt; tnðzÞÞ ! 0 ðn ! 1Þ;

that is, s 2 NðtÞ: By hypothesis, there must be a function f 2 HCððCtn
CjÞÞ:

Thus, for a suitable subsequence ðtnj
Þ of ðtnÞ; ðCtnj

Cjf Þ tends to the identity
function gðzÞ ¼ z in HðDÞ: In particular, f ðjðtnj

ð0ÞÞÞ ! 0 and f ðjðtnj
ð3=sÞÞÞ
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! 3=s as j ! 1: But this would yield that f ðjðznj
ÞÞ ! 0 and f ðjðwnj

ÞÞ !
3=s ( j ! 1), which is a contradiction because both sequences are the
same. ]

In the case G ¼ C the following corollary is derived from the latter two
theorems.

Corollary 4.10. Let j be an entire function. We have:

(a) If Cj is @-hypercyclic then j is a non-constant polynomial.

(b) If j is a polynomial of degree one or two then Cj is totally

omnipresent.

Proof. Due to Picard’s theorem [17, Chap. 9] and to the fact that limz!1
PðzÞ ¼ 1 if P is a non-constant polynomial, only these polynomials are
proper, hence the transcendental entire functions are excluded from
@-hypercyclicity by Theorem 4.9. This proves (a). As for (b), if j is a
polynomial of degree one, then j is bijective from C onto C; so it is locally
one-to-one near the boundary and Theorem 4.8 applies. Assume that j is a
polynomial of degree two, namely, jðzÞ ¼ az2 þ bz þ c (a; b; c 2 C; aa0).
Our goal is to get a compact set K � C such that j is one-to-one on every
open ball U � C=K : Choose K ¼ %BBð0; 1 þ jb=ajÞ: Then a ball U as before
would lie on a half-plane H which is at a distance greater than jb=aj from the
origin. A simple calculation shows that if jðzÞ ¼ jðwÞ and zaw then
w ¼ 	b

a
	 z: But if z 2 U then z 2 H; whence w 2 	b

a
	 H: Hence w =2 U

because H \ ð	b
a
	 HÞ ¼ |: Thus, j is one-to-one on U ; as required. ]

By Theorem 4.9 and Corollary 4.10 we can furnish a new (even linear)
example of a strongly omnipresent operator which it is not totally omnipresent.

Example 4.11. Choose G ¼ D and let j be the Blaschke product with
zeros at the points zn ¼ 1 	 1

n2 ðn 2 NÞ; that is,

jðzÞ ¼
Y1
n¼1

n2z 	 n2 þ 1

ðn2 	 1Þz 	 n2
ðz 2 DÞ:

Since
P

ð1 	 jznjÞ5þ1; we have (see [16, Theorem 6.1]) that j 2 HðD;DÞ
and that j extends to a continuous function on %DD=f1g with jjðzÞj ¼ 1 on
ð@DÞ=f1g: Then ð@DÞ \ @jðV \ GÞ is not empty for all V 2 Oð@DÞ; hence
jðV \ GÞ is not relatively compact in D; so Cj is strongly omnipresent.
However, Cj is not totally omnipresent because j is not proper, since, for
instance, j	1ðf0gÞ ¼ fzn : n 2 Ng; which is not compact. In the case G ¼ C any
Cj with j transcendental is strongly omnipresent but not totally omnipresent.

As for the case when j is a polynomial, we raise the following.
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Conjecture 4.12. Let j be a polynomial of degree 3 or larger. Then Cj

is not totally omnipresent.

We shall be content for now by proving that if N is a positive integer with
N510 and jðzÞ ¼ zN then Cj is not totally omnipresent. According to
Theorem 4.9, this will be achieved as soon as we can show a real number
s > 3 in such a way that to each r > 0 we can associate a ball Bða;RÞ �
fjzj > rg with the property that j is not one-to-one on Bða;R=sÞ: Since
sin p

5
50:31; we have that sin 2p

N
4sin p

5
51

3
: Choose s with sin p

N
51

s
51

3
; and fix

r > 0: Since R=s
Rþr

! 1
s

as R ! 1; we can select an R > 0 with sin p
N
5R=s

Rþr
:

Consider the balls Bða :¼ R þ r;RÞ; and BðR þ r;R=sÞ: The first one is in
fjzj > rg while the second one is tangent to two rays from the origin making
an angle of opening 2 arcsin R=s

Rþr
; which is greater than 2p=N: But given

w0 2 C=f0g the roots of jðzÞ ¼ w0 are N points in the circle jzj ¼ jw0j1=N

equally distributed with angular distance equal to 2p=N: Then for a suitable
w0 there are at least two roots of jðzÞ ¼ w0 in the second ball, that is, j is
not one-to-one on Bða;R=sÞ:

We are now assuming that Lc is the left-composition operator on HðGÞ
associated to an entire function c: In [9, Sect. 3] it is asserted that Lc is
strongly omnipresent on HðGÞ if and only if MðLcÞa| if and only if c has
an approximate right inverse, that is, there is a sequence ð fnÞ of entire
functions such that cð fnðzÞÞ ! z ðn ! 1Þ locally uniformly in C: The
proof is based there on the fact that locally dense range plus local stability
near the boundary imply strong omnipresence. But they also imply total
omnipresence, see Theorem 4.5. Consequently, we are allowed to establish
the following theorem.

Theorem 4.13. Let Lc be the left-composition operator on HðGÞ defined

by c 2 HðCÞ: Then the following assertions are equivalent:

(a) The operator Lc is totally omnipresent.

(b) The operator Lc is strongly omnipresent.

(c) The operator Lc is @-hypercyclic.

(d) The set MðLcÞ is non-empty.

(e) The function c has an approximate right inverse.

In particular, c must be surjective in order that Lc be totally omnipresent;
but surjectivity alone is not sufficient (see [9]).

We finish this section by considering the multiplication operator Mh

generated by a function h 2 HðGÞ: In [9] it is shown that Mh is strongly
omnipresent if and only if h is non-zero. It is easy to realize that a stronger
condition is needed for total omnipresence.
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Theorem 4.14. Assume that h 2 HðGÞ: Then the following are

equivalent:

(a) The operator Mh is totally omnipresent.

(b) The operator Mh is @-hypercyclic.

(c) The set of zeros of h is finite.

Proof. That (a) implies (b) is due to Proposition 2.2. Suppose now that
(b) holds and that the set of zeros of h is not finite. Then the Analytic
Continuation Principle allows to assume the existence of a sequence ðznÞ �
G tending to some boundary point t such that hðznÞ ¼ 0 for all n: For each n;
let us choose rn > 0 so small that Bn :¼ Bðzn; rnÞ � G and supz2Bn

wðt;BnÞ !
0 ðn ! 1Þ: Define the mappings tnðzÞ :¼ rnz þ zn: Then ðtnÞ 2 NðtÞ;
whence there exists f 2 HðGÞ such that the sequence fhðtnðzÞÞf ðtnðzÞÞ : n 2
Ng is dense in HðDÞ; which is not possible, because hðtnð0ÞÞf ðtnð0ÞÞ ¼ 0 for
all n: This contradiction shows that (b) implies (c). Finally, assume that the
hypothesis of (c) is fulfilled, that is, hðzÞa0 for all z 2 G=K ; for some
compact set K � G: If U � G=K is an open ball then the operator
f 2 HðGÞ/ðh � f ÞjU 2 HðUÞ has dense range by Runge’s theorem. Hence
Mh has locally dense range near the boundary. Moreover, Mh is obviously
locally stable near the boundary (for any h). An application of Theorem 4.5
yields that (c) implies (a). ]

Observe that from the last theorem we obtain further examples of linear
strongly non-totally omnipresent operators: just take G ¼ D and T ¼ Mh;
where h is the Blaschke product j considered in Example 4.11.

5. DENSE LINEAR MANIFOLDS OF MONSTERS

The content of this section has been the main motivation for this paper.
As indicated in Section 1, Luh [22] and Grosse-Erdmann [18] showed that,
topologically speaking, the set of Luh-monsters is huge. We prove here that
not only topologically but also algebraically Luh ‘‘created’’ too many
monsters. The precise formulation for this statement will be given in
Theorem 5.2. Nevertheless, a more general result can be stated.

Theorem 5.1. Assume that ðSjÞ is a countable family of linear totally

omnipresent operators on HðGÞ: Then there exists a dense linear submanifold

M � HðGÞ such that MðSjÞ*M =f0g for all j:

Proof. Fix a dense sequence ftk : k 2 Ng in @G: For each k 2 N; fix a
sequence ðtðkÞn Þ 2 NðtkÞ: By Proposition 2.2, the sequence T

ðk;jÞ
n : X ! Y

(n 2 N) is densely hereditarily hypercyclic for every k 2 N and every j; where
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X ¼ Y :¼ HðGÞ and T
ðk;jÞ
n :¼ CtðkÞn

Sj: Then the hypotheses of Theorem 3.1
are fulfilled. Hence there is a dense linear manifold M � HðGÞ with

M =f0g �
\
k;j

HCððCtðkÞn
SjÞÞ:

But observe that the last intersection is included in MðSjÞ for each j; because
in order that Sjf be a holomorphic monster it is sufficient to see its wild
behaviour only near the points of a dense boundary subset, see [6, Lemma
2.1]. This drives us to M =f0g � MðSjÞ for all j: ]

The last theorem yields immediately the next corollary. Recall that a point
a 2 G should be fixed in the definition of Luh-monster.

Theorem 5.2. Assume that G � C is a simply connected domain and that

a 2 G. Then there exists a dense linear submanifold of HðGÞ whose non-zero

members are Luh-monsters.

Proof. Let us define the operators Sj ð j 2 ZÞ as Sj ¼ Dj ð j 2 N0Þ; Sj ¼
Dj

a ð	j 2 NÞ: Now just apply Theorem 5.1 and take in mind that

fLuh-monstersg ¼
\
j2Z

MðSjÞ: ]

Of course, Theorem 5.1 holds when the sequence ðSjÞ is changed by just a
single operator T on HðGÞ: One can believe that the same assertion of
Theorem 5.1 would hold just by assuming that T is a linear strongly

omnipresent operator. This is false. As a matter of fact, it can happen that
MðTÞ does not contain any manifolds of dimension greater than one. Indeed,
consider the linear operator Tf ðzÞ ¼ f ð0Þ � jðzÞ on HðDÞ; where j 2 HðDÞ is
a fixed holomorphic monster (see [9, Example 2.9]). Assume that M is a linear
manifold with M =f0g � MðTÞ and dimðMÞ52: Hence we can select two
linearly independent functions f ; g in M: Since MðTÞ ¼ fh 2 HðDÞ : hð0Þa
0g we have a :¼ f ð0Þa0agð0Þ ¼: b: Define hðzÞ :¼ f ðzÞ 	a

bgðzÞ: By linear

independence, h 2 M =f0g; whence h 2 MðTÞ: Thus, 0ahð0Þ ¼ a	 a ¼ 0;
which is a contradiction. This shows that dimðMÞ41; as
required. By the way, this shows that the operator T is not totally omnipresent.

6. RELATIONSHIP TO THE DI-OPERATORS. THE VOLTERRA
OPERATOR

In this section we are considering briefly the boundary wild behaviour
from another point of view. In 1995 Bernal-Gonz!aalez proved [2] that for
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every subset A � G which is not relatively compact in G there exists a
residual set M in HðGÞ such that f ðnÞðAÞ is dense in C for every n 2 N0; and
Calder !oon-Moreno showed later [12] that the same property is shared by
certain kinds of infinite order differential and antidifferential operators and
Volterra operators. This motivated us [7] to introduce the notion of dense-
image operators or, briefly, DI-operators. A DI-operator is a (not necessarily
linear) continuous self-mapping T on HðGÞ satisfying that the set MðT ;AÞ :
¼ ff 2 HðGÞ : Tf ðAÞ is dense in Cg is dense in HðGÞ for every subset A � G

which is not relatively compact in G: From the fact that any of these subsets
contains a sequence tending to some boundary point, it is easy to see that
every totally omnipresent operator is a DI-operator. The converse is not
true, see below. Let us summarize in one theorem several examples of
relevant classes of DI-operators, see [7,12]. The interested reader should
compare the following to the results of Section 4 and note that these earlier
results improve in part the content of the next theorem.

Theorem 6.1. Let G � C be a domain, FðzÞ; CðzÞ two power series as in

Theorem 4.1, and let j : G � G ! C be a holomorphic function with respect to

both variables. Assume also that j1 2 HðG;GÞ; j2 2 HðCÞ; j3 2 HðGÞ: We

have:

(a) If F is non-zero then FðDÞ is a DI-operator.

(b) If G is simply connected, a 2 G and Vj is the Volterra operator

associated to a; j; then Vj is a DI-operator if and only if for every compact

subset L � G and every A � G which is not relatively compact there exist

b 2 A=L and s 2 G such that jðb; sÞa0: In addition, if j satisfies this property

then FðDÞ þ Vj is a DI-operator. In particular, if at least one of F; C is non-

zero then FðDÞ þCðD	1
a Þ is a DI-operator.

(c) Every onto linear operator is a DI-operator.

(d) The operator Cj1
is DI if and only if j1 is proper. In particular, if

G ¼ C; then Cj1
is a DI-operator if and only if j1 is a non-constant

polynomial.

(e) The operator Lj2
is DI if and only if j2 is non-constant.

(f) The operator Mj3
is DI if and only if the set of zeros of j3 is finite.

In [7] it is proved that DI-property implies omnipresence, and linear
examples are exhibited showing that strong omnipresence (so omnipresence)
does not imply DI-property. A non-linear example of a DI-operator which
is not strongly omnipresent is also furnished, but we do not know whether
every linear DI-operator is strongly omnipresent. If G ¼ C and jðzÞ ¼ z10

then by part (d) of the latter theorem the linear operator Cj is DI (it is also
strongly omnipresent, because j is not constant), but it is not totally
omnipresent, as we saw after Conjecture 4.12. Moreover, if G ¼ C; a ¼ 0
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and jðz; tÞ :¼ sinðpzÞ then the linear operator Vj is strongly omnipresent by
[8] but it is not DI (so not totally omnipresent): choose L ¼ | and A ¼ N in
part (b) of Theorem 6.1.

Now, we focus our attention on the Volterra operator of the first kind Vj

and conclude this paper with the statement of two results whose contents
and proofs are analogous to the corresponding ones in [8]. Hence their
proofs are left to the interested reader. In fact, similarly to [8], the first result
below can be used to prove the second one as well as some assertions of
Theorem 4.1. In the following, G is a simply connected domain of C and a is
a fixed point in G: In addition, if B is a closed ball in G; then AðBÞ denotes
the Banach space of all functions that are continuous in B and holomorphic
in B0; endowed with the maximum norm jj � jjB: With the same norm we
endow the subspace AbðBÞ consisting of all functions of AðBÞ with a zero at
b; where b 2 @B:

Theorem 6.2. Let S : HðGÞ ! HðGÞ be an operator and j : G � G ! C

a holomorphic function with respect to both variables. Then the operator on

HðGÞ defined by

Tf ðzÞ ¼ Sf ðzÞ þ VjðzÞ

is totally omnipresent if there exists a compact set K � G such that for each

closed ball B0 � G=K there is a closed ball B with B0 � B � G=K and a point

b 2 @B such that

(a) the operator S extends continuously to a mapping

*SS : AðBÞ ! AðB0Þ;

(b) the mapping *TT : AbðBÞ ! AðB0Þ defined by

*TTf ðzÞ ¼ *SSf ðzÞ þ
Z z

b

f ðtÞjðz; tÞ dt ðz 2 B0Þ

has dense range.

Theorem 6.3. Assume that j : G � G ! C is holomorphic and that there

exist N 2 N0 and a compact set K � G such that

@Nj
@zN

ðw;wÞa0 ¼ @nj
@zn

ðw;wÞ ðn ¼ 0; 1; . . . ;N 	 1Þ for all w 2 G=K :

Then the operator Vj is totally omnipresent.
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We propose here the problem of characterizing the total omnipresence of
Vj in terms of j:

ACKNOWLEDGMENTS

The authors are grateful to the referees for helpful comments and suggestions.

REFERENCES

1. L. Bernal-Gonz!aalez, Omnipresent holomorphic operators and maximal cluster sets, Colloq.

Math. 63 (1992), 315–322.

2. L. Bernal-Gonz!aalez, Plane sets having dense holomorphic images, Rev. Roumaine Math.

Pures Appl. 40 (1995), 567–569.

3. L. Bernal-Gonz!aalez, Hypercyclic sequences of differential and antidifferential operators, J.

Approx. Theory 96 (1999), 323–337.

4. L. Bernal-Gonz!aalez, Densely hereditarily hypercyclic sequences and large hypercyclic

manifolds, Proc. Amer. Math. Soc. 127 (1999), 3279–3285.

5. L. Bernal-Gonz!aalez, Universal images of universal elements, Studia Math. 138 (2000), 241–

250.

6. L. Bernal-Gonz!aalez, M. C. Calder !oon-Moreno, Holomorphic T-monsters and strongly

omnipresent operators, J. Approx. Theory 104 (2000), 204-219.

7. L. Bernal-Gonz!aalez, M. C. Calder !oon-Moreno, Operators with dense images everywhere, J.

Math. Anal. Appl. 263 (2001), 95–109.

8. L. Bernal-Gonz!aalez, M. C. Calder !oon-Moreno, K. G. Grosse-Erdmann, Strongly

omnipresent integral operators, Integral Equations Operator Theory, in press.

9. L. Bernal-Gonz!aalez, M. C. Calder !oon-Moreno, K.-G. Grosse-Erdmann, Strongly omnipre-

sent operators: General conditions and applications to composition operators, J. Austral.

Math. Soc. 72 (2002), 335–348.

10. J. B"ees, Invariant manifolds of hypercyclic vectors for the real scalar case, Proc. Amer. Math.

Soc. 127 (1999), 1801–1804.

11. P. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993),

845–847.

12. M. C. Calder !oon-Moreno, Holomorphic differential operators and plane sets with dense

images, Complex Variables 47 (2002), 167–176.

13. E. F. Collingwood, A. J. Lohwater, ‘‘The Theory of Cluster Sets,’’ Cambrigde Univ. Press,

Cambridge, UK, 1966.

14. L. Ehrenpreis, Mean periodic functions I, Amer. J. Math. 77 (1955), 293–328.

15. D. Gaier, ‘‘Lectures on Complex Approximation,’’ Birkh.aauser, Boston, 1987.

16. J. B. Garnett, ‘‘Bounded Analytic Functions,’’ Academic Press, New York, 1981.

17. B. R. Gelbaum, ‘‘Modern Real and Complex Analysis,’’ Wiley, New York, 1995.

18. K.-G. Grosse-Erdmann, Holomorphe monster und universelle Funktionen, Mitt. Math.

Sem. Giessen 176 (1987).

19. K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math.

Soc. (N.S.) 36 (1999), 345–381.

20. K.-G. Grosse-Erdmann, Rate of growth of hypercyclic entire functions, Indag. Math. 11

(2000), 561–571.
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